
Applying a Business Policy Meta-Model in a Domain Specific Modeling Language 

Tod Sedbrook, Monfort College of Business, University of Northern Colorado, Greeley, CO USA 

Tod.Sedbrook@unco.edu 

Abstract 

Developing a Domain Specific Modeling Language (DSML) for expressing business policies 

requires representing, organizing and maintaining the knowledge of business domain experts 

such as executives or business process managers.   This study defines a DSML meta-model to 

express complex semantic patterns of business policies and demonstrates a way to transform 

resulting policy models into executable code specifications.   We validate the design by 

exploring business applications within the context of the Resource, Event, Agent - Enterprise 

Ontology (REA-EO).  The application of the DSML policy framework is illustrated through a 

succession of models to capture, validate and apply business polices. 

Introduction 
Model Driven Engineering (MDE) and Domain Specific Modeling Languages (DSML) promises 

a  ten-fold productivity increase by assisting requirements analysis and supporting code synthesis  

(Umble, Haft et al. 2003; Sprinkle, Mernik et al. 2009).   The vision of MDE is to create a 

transparent path from high level requirements to executable code.  Business modeling is a key 

MDE process that drives the definition of business policies where designers and testers assure 

policies are captured and verified within subsequent design and testing models.   

Business managers collaborate and modelers progressively annotate designs assisted through 

DSML meta-modeling tools to engineer policies for business systems.   Resulting DSML models 

can then detect inconsistencies, document exceptions and verify the resulting software 

implementations (Sprinkle, Mernik et al. 2009; Frantz 2011).     

Work is underway to define a domain specific language (DSL) that conforms to the REA–EO 

operational level ontology.  But, there is a need to extend DSLs beyond the operational level to 

the REA-EO policy level (Sonnenberg, Huemer et al. 2011).   In particular, there is a need to 

explore capabilities for representing REA-EO policy extensions within a modeling framework 

that helps mangers as they capture, apply and evolve business policies.    

This study defines a DSML meta-model that generalizes the linguistic definitions of knowledge-

level extensions as specified in the REA-EO (Geerts and McCarthy 2006).  The DSML meta-

model is applied to capture domain specific business policies.  The resulting high-level domain 

policies are then automatically translated into executable code.  The study develops a high-level 

DSML meta-model, applies the resulting language to specify domain specific models of business 

policies and demonstrates how transforming model representations produce executable code for 

use in policy validation frameworks.   We  apply a design science methodology to build and 

evaluate a DMSL (Hevner, March et al. 2004) and investigate its construction and validation 

within a case study. 

Defining a Meta-Model for a Policy Language 
Creating a DSML meta-model is an iterative process that evolves through repeated stages of 

analysis, design and implementation (Mernik, Heering et al. 2005; Cho 2011).  We first 



investigated general characteristics of existing policy languages across a wide variety of 

domains.  In addition, we reviewed philosophical theories of reasoning and knowledge 

representation and identified four ontological relationships necessary for a policy language: 

1) Intrinsic and Mutual Properties – relates elements to values   

2) Classification Relations- relates two or more properties of elements to form higher level types 

3) Exemplar Relations – relates types to a prototype or specification 

4) Aggregations – relates collections of exemplars 

We tested these ontological relationships by evaluating their correspondence to the policy 

terminology and representational patterns from five existing concrete policy languages across the 

domains of the REA-EO (knowledge-level), business rule vocabularies, privacy, security and 

UML/OCL modeling.    

The four ontological relationships were mapped to a meta-model.  Figure One presents the meta-

model and the following defines meta-model elements of Policy, Assertion Exemplar and 

Association Exemplar.  A Policy is an aggregation of Assertion Exemplars and Policies are 

coupled through the Association Exemplar association class.   An Assertion Exemplar represents 

a set of intrinsic properties derived from a policy-level type where each property is mapped to a 

desired or intended value.  For example, the “Renter type” defines the intrinsic property “Age” 

and the Assertion Exemplar maps “Age” to the value “over 25 years old”.  An Association 

Exemplar represents a set of the desired or intended value of a mutual property meaningful only 

in the context of two or more Policies.   That is, the value assigned to an Association Exemplar’s 

property represents a desired relationship between Policies.  For example, “Rental” and “Pick 

Up” Policies are related by the mutual property “Valid Date” with the desired value of “true”.   

Code Transformations for Policy Validation 
The definition of the  policy meta-model provides a language to specify formalized policy 

models.   The next step is to transform the explicit policy models into a programming language 

that can be plugged into standard validation frameworks.   To investigate the policy meta-model, 

prototypes were developed to extend Microsoft Visual Studio’s DSL tools.  Visual Studio (2010) 

supports defining a policy meta-language to produce a stand-alone graphical designer suitable for 

creating concrete policy models.   The resulting stand-alone graphical designer (the output of 

applying the meta-model) provides business experts with the ability to manipulate graphical 

shapes to define specific configurations of concrete policies.  Concrete policies are then 

translated into F# code which is plugged into the .Net validation framework. 

We choose the F# functional language as .Net language for translating policies models for the 

following reasons.  First, the translation of domain policies to F# retains the policy’s semantic 

meaning by supporting English-like representations which can be independently examined.  

Second, the interoperable F# representations provide pluggable extensions to augment Visual 

Studio’s existing validation APIs.   Third, F# shares common attributes with lisp, Haskell,  

OCaml, ML and other functional programming languages that have demonstrated a long history 

of creating concise, readable and logically verifiable code. (Cabot and Teniente 2007; Syme, 

Granicz et al. 2010).     

 



Figure One.  A Policy Meta-Model generalizes the REA-EO Policy framework to define a 

language for creating Policies. 

 

Model Driven Policy Management 
Figure Two illustrates model driven policy management where an REA-EO operational model is 

used to express business exchanges (Sonnenberg, Huemer et al. 2011).  The operational model 

provides a focal point to identify and refine business policies.  These policies result in policy 

models which are then transformed into validation code and applied within the .Net framework.    

We first created a REA-EO DSML for a case study of car rental exchanges.  The purpose of this 

DSML operational model was to experiment with scenarios and help managers identify required 

policies to respond to customer requests, ensure consistency of pricing and routing, and direct 

rental operations.  The resulting collection of polices were then modeled through a DSML driven 

by the policy meta-model which formally defined policies.  The resulting policies models were 

translated into F# code and plugged into the .Net validation framework.   Policies expressed as 

code were then applied to validate further refinements to the evolving operational model.   As 

system implementation proceeded, the policy code base was ultimately embedded into 

production code to validate user input and assure system transactions produced valid states. 

Conclusion 
We identified key challenges involved in modeling business policies within a DSML.  Business 

models that include business policies must match the dynamics of business environments where 

business strategies, markets and technologies are constantly changing.  The DSML prototypes 

allowed modelers to flexibly manage policies at a higher level and demonstrated that functional 

programming languages, such as F#, offer a promising approach to support maintainability, 

scalability and reliability of business policies.  The DSML prototypes instilled confidence by 

addressing a coherent and integrated view of rental exchanges policies investigated in a case 

study.  The evaluation provided insight into managing policy elicitation, policy formalization, 

code generation and validation and offers encouragement for further investigations of DSML 

policy languages.     



 Figure Two.  The DSML Policy model was evaluated in the context of Model Driven Policy 

Management. 

  

References 
Cabot, J. and E. Teniente (2007). "Transformation techniques for OCL constraints." Science of Computer 

Programming 68(3): 152-168. 
Cho, H. (2011). A demonstration-based approach for designing domain-specific modeling languages. Proceedings 

of the ACM international conference companion on Object oriented programming systems languages and 
applications companion. Portland, Oregon, USA, ACM: 51-54. 

Frantz, R. Z. (2011). "A domain-specific language to desing enterprise application integration solutions." 
International journal of cooperative information systems : IJCIS 20(2): 143-176. 

Geerts, G. L. and W. E. McCarthy (2006). "Policy-Level Specifications in REA Enterprise Information Systems " 
Journal of Information Systems(Fall 2006). 

Hevner, A. R., S. T. March, et al. (2004). "Design Science in Information Systems Research." MIS Quarterly 28(1): 75-
105. 

Mernik, M., J. Heering, et al. (2005). "When and how to develop domain-specific languages." ACM Comput. Surv. 
37(4): 316-344. 

Sonnenberg, C., C. Huemer, et al. (2011). The REA-DSL: A Domain Specific Modeling Language for Business Models. 
Advanced Information Systems Engineering. H. Mouratidis and C. Rolland, Springer Berlin / Heidelberg. 
6741: 252-266. 

Sprinkle, J., M. Mernik, et al. (2009). "Guest Editors' Introduction: What Kinds of Nails Need a Domain-Specific 
Hammer?" Software, IEEE 26(4): 15-18. 

Syme, D., A. Granicz, et al. (2010). Expert F# 2.0 (Expert's Voice in F#). New York,N.Y., Springer-Verlag. 
Umble, E. J., R. R. Haft, et al. (2003). "Enterprise resource planning: Implementation procedures and critical success 

factors." European Journal of Operational Research 146(2): 241-257. 


